a function that takes in a base dataset and a desired treatment effect and
creates the structure for simulated datasets

returns a data frame that contains 3 variables for each simulated dataset:
IDx = ID of patients included in simulated dataset x - should be used to link
back to covariate and exposure data for each simulated dataset
TIMEx = time until event or censoring for patients in dataset x
EVENTx = event status (1 = event, 0 = censored) for patients in dataset x

hdSimSetup <- function(x, idVar, outcomeVar, timeVar, treatVar,
 form, effectRR = 1, MM = 1, nsim = 500,
 size = nrow(x), eventRate = NULL)
{
 x = dataset on which sims are based
 idVar = name of id variable
 outcomeVar = name of outcome variable
 timeVar = name of the follow-up time variable
 treatVar = name of treatment variable
 form = RHS of formula used for outcome simulation (excluding treatment of interest)
 effectRR = the desired treatment effect relative risk
 MM = multiplier of confounder effects on outcome on the log-scale
 nsim = number of desired datasets
 size = desired size of simulated datasets (i.e., # of individuals)
 eventRate = desired average event rate -- default is the event
 # rate observed in the base dataset

 n <- nrow(x)

 sidx <- sapply(c(idVar, outcomeVar, timeVar, treatVar),
 function(v) which(names(x) == v))
 names(x)[sidx] <- c("ID", "OUTCOME", "TIME", "TREAT")
 y1 <- Surv(x$TIME, x$OUTCOME)
 y2 <- Surv(x$TIME, !x$OUTCOME)
 form1 <- as.formula(paste("y1 ~ TREAT +", form))
 form2 <- as.formula(paste("y2 ~ TREAT +", form))

 # estimate survival and censoring models
 smod <- coxph(form1, x = TRUE, data = x)
 fit <- survfit(smod)
 s0 <- fit$surv # survival curve for average patient
 ts <- fit$time
 nts <- length(ts)
 cmod <- coxph(form2, data = x)
 fit <- survfit(cmod)
 c0 <- fit$surv # censoring curve for average patient

 # find event rate in base cohort (if everyone was followed to end of study)
 Xb <- as.vector(smod$x %*% coef(smod))
 mx <- colMeans(smod$x)
 xb0 <- mx %*% coef(smod)
 s0end <- min(s0)
 if(is.null(eventRate)) eventRate <- 1-mean(s0end^exp(Xb - xb0))

 # find delta value needed to get approximate desired event rate under new parameters
 bnew <- replace(MM*coef(smod), names(coef(smod)) == "TREAT", log(effectRR))
 Xbnew <- as.vector(smod$x %*% bnew)
 sXend <- s0end^(exp(Xb - xb0))
 fn <- function(d) mean(sXend^d) - (1 - eventRate)
 delta <- uniroot(fn, lower = 0, upper = 20)$root

 # setup n X nts matrix of individual survival and censoring curves under new parameters
 Sx <- matrix(unlist(lapply(s0, function(s) s^(delta*exp(Xbnew - xb0)))), nrow = n)
 Xbnew <- as.vector(smod$x %*% coef(cmod))
 x0 <- matrix(unlist(lapply(c0, function(s) s^(delta*exp(Xbnew - xb0)))), nrow = n)

 # sample and simulate
 ids <- tnew <- ynew <- data.frame(matrix(nrow = size, ncol = nsim))
 for(sim in 1:nsim) {
 # code for sample and simulate
idxs <- sample(n, size, replace = TRUE)
ids[,sim] <- x$ID[idxs]

event time
u <- runif(size, 0, 1)
w <- apply(Sx[idxs,] < u, 1, function(x) which(x)[1]) # the first time survival drops below u
stime <- ts[w]
w <- Sx[idxs,nts] > u # for any individuals with survival that never drops below u,
stime[w] <- max(ts) + 1 # replace with arbitrary time beyond last observed event/censoring time

censoring time
u <- runif(size, 0, 1)
w <- apply(Cx[idxs,] < u, 1, function(x) which(x)[1]) # the first time censor-free survival drops
ctime <- ts[w]
w <- Cx[idxs,nts] > u # for any individuals with censor-free survival that never drops below
ctime[w] <- max(ts) # replace with hard censor time at last observed event/censoring time

put it together
tnew[,sim] <- pmin(stime, ctime)
names(tnew) <- paste("TIME", 1:nsim, sep = "")
ynew[,sim] <- stime == tnew[,sim]
names(ynew) <- paste("EVENT", 1:nsim, sep = "")

names(ids) <- paste("ID", 1:nsim, sep = "")
names(tnew) <- paste("TIME", 1:nsim, sep = "")
names(ynew) <- paste("EVENT", 1:nsim, sep = "")
data.frame(ids, ynew, tnew)