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Sensitivity analysis and external adjustment for unmeasured
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of therapeutics{
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SUMMARY

Background Large health care utilization databases are frequently used to analyze unintended effects of prescription
drugs and biologics. Confounders that require detailed information on clinical parameters, lifestyle, or over-the-counter
medications are often not measured in such datasets, causing residual confounding bias.
Objective This paper provides a systematic approach to sensitivity analyses to investigate the impact of residual
confounding in pharmacoepidemiologic studies that use health care utilization databases.
Methods Four basic approaches to sensitivity analysis were identified: (1) sensitivity analyses based on an array of
informed assumptions; (2) analyses to identify the strength of residual confounding that would be necessary to explain
an observed drug-outcome association; (3) external adjustment of a drug-outcome association given additional information
on single binary confounders from survey data using algebraic solutions; (4) external adjustment considering the joint dis-
tribution of multiple confounders of any distribution from external sources of information using propensity score calibration.
Conclusion Sensitivity analyses and external adjustments can improve our understanding of the effects of drugs and
biologics in epidemiologic database studies. With the availability of easy-to-apply techniques, sensitivity analyses
should be used more frequently, substituting qualitative discussions of residual confounding. Copyright# 2006 John Wiley
& Sons, Ltd.

key words—confounding; bias; sensitivity analysis; claims databases; epidemiologic methods; pharmacoepidemiology

BACKGROUND

Results from pharmacoepidemiologic research often
have immediate and far-reaching clinical, regulatory,

and economic implications. Like others in similar
non-experimental research, pharmacoepidemiologists
need to carefully evaluate the causality of an
association between a prescription drug and a health
outcome. Although a variety of systematic errors
may bias non-experimental research,1 confounding
bias is of particular concern in epidemiologic studies
of drug effects.2

Large health care utilization data sets are often the
best sources of data to analyze the relation between
prescription drugs or biologic use and unintended and
infrequent health events. A major advantage of health
care utilization data is that they reflect routine practice
for large and representative populations, in contrast
to the much smaller and often healthier patient
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populations in clinical trials.3 They are large enough to
assess the frequency and etiology of rare drug effects
and avoid the delays common in the collection of
primary data.
Despite their importance, pharmacoepidemiologic

claims data studies have been criticized for the
incompleteness of their information on potential
confounders such as the use of over-the-counter
medications (e.g., aspirin in studies of NSAIDs),
markers of clinical disease severity, body mass index,
smoking status, functional status, laboratory values,
among others (Table 1). Such factors may lead to
selective prescribing of drugs, which may result in
biased estimates of the association between drugs and
health outcomes.4 All too often research studies
discuss the potential for residual confounding only
qualitatively without any quantitative assessment of
the magnitude of such bias. Sensitivity analyses were
described as ‘the last line of defense against biases after
every effort has been made to eliminate, reduce, or
control them in study design, data collection, and data
analysis.’5 The basic concept of sensitivity analyses is
to make informed assumptions about potential residual
confounding and quantify its effect on the relative risk
estimate of the drug-outcome association. If suitable
data sources can be identified, these assumptions can
be substituted by empirical estimates and then be used
for external adjustment of the Drug-Disease Outcome
Association. Figure 1 shows how sensitivity analyses
and external adjustment fit into the methods tool kit of

pharmacoepidemiologists to better understand and
possibly control confounding.
Existing sensitivity analyses include the production

of a grid of estimates as a function of several
assumptions with limited knowledge of the true
parameter constellation. Several epidemiologic studies
on occupational safety using employment records with
limited information on workers’ health status used this
approach.6,7 Recent studies have explored how strong
unmeasured confounding must be to explain the
elevated relative risks observed in studies of drug
effects using health care utilization databases.8–11 If
additional information is available through surveys,
external adjustment can be attempted with increasing
methodological complexity.
Among the several recent examples of observational

database studies on drug effects that struggle with the
potential for residual confounding bias are those of the
associations between newer sedative hypnotics and hip
fractures, statin use and cancer, selective COX-2
inhibitors and cardiovascular events, and anti-TNFa
therapy and lymphatic malignancies.
This paper demonstrates a framework of techniques

for sensitivity analysis and external adjustment for
residual confounding using several examples. First, it
explains simple sensitivity analyses in the absence of
external information. Next, it demonstrates the use
of external information for external adjustment of effect
estimates for single binary covariates and follows with
an examination of techniques for externally adjusting

Table 1. Clinical, behavioral, and socioeconomic factors often not measured in pharmacoepidemiologic database studies and that
may cause residual confounding

Potential confounders often unmeasured
in pharmacoepidemiologic
database studies

Examples of drug—disease outcome associations possibly affected by residual confounding
in epidemiologic database studies

Anti-TNFa therapy and
lymphoma in patients

with rheumatoid arthritis
Statins

and fractures

Cox-2 inhibitors
and myocardial

infarction

NSAIDs
and short-term

mortality

Body mass index X X X
Over-the-counter aspirin use, X
Smoking X X X
Frailty X X X
Functional impairment X
Cognitive impairment X
Educational attainment X X X
Income status X X X

Laboratory values, for example, EBV
antibody titer, lipid level, CRP level

X X

Results of invasive and non-invasive
exams, for example, bone mineral
density measure (DXA), ECG,

X X

Disease-specific severity markers X
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multiple confounders of various distributions. Formost
analyses, spread-sheets with example data can be
downloaded at http://www.drugepi.org.

Residual confounding and the basics
of sensitivity analyses

Physicians prescribe drugs in light of diagnostic and
prognostic information available at the time of pre-
scribing. The factors influencing this decision vary
by physician and over time12 and frequently involve
clinical, functional, or behavioral characteristics
of patients. If these factors are also independent
predictors of the study outcome, failing to control
for such factors can lead to confounding bias. The
confounding, thus, results from an informed selection
or channeling of patients into drug-exposure groups
based on indications and contraindications,13 and is,
therefore, widely referred to as confounding by indi-
cation.4

A typical example would be the prescribing of non-
steroidal anti-inflammatory drugs (NSAIDs) for pain
and their effect on gastrointestinal (GI) hemorrhage.
Non-selective NSAIDs are known for their potential to
cause gastric and duodenal ulcer, erosive gastritis, and
GI hemorrhage. Physicians who act rationally and
follow treatment guidelines will prescribe COX-2-
selective NSAIDs to patients with a history of GI
irritation or hemorrhage;14 this subgroup of NSAIDs

has demonstrated reduced gastric side effects in
randomized clinical trials (RCT).15,16 Because these
patients are at higher risk for the development of a GI
hemorrhage independent of drug use, epidemiologic
studies may show an apparent association between
selective COX-2 inhibitor use and GI bleeding.17 A
related example of confounding bias in studies of the
intended effect of drugs using observational data is one
on the efficacy of gastroprotective drugs among
NSAID users. The study found an apparent 10-fold
increase in risk of gastric bleeding or perforation
among users of gastroprotective drugs that is likely due
entirely to confounding.18

Causal graphs (Figure 2) are helpful for illustrating
confounding.19 A factor can be a confounder only if
that factor is associatedwith drug exposure (OREC 6¼ 1,
see notation in Table 2) and is also an independent risk
factor of the disease outcome (RRCD 6¼ 1).Note that the
association OREC can be causal or incidental. If either
association is non-existent, there is no confounding.
Factors that are not independent predictors of the study
outcome (RRCD¼ 1) cannot be confounders even if
they are not balanced among drug exposure groups.
Likewise, if a risk factor is not associated with the drug
exposure—for example, through random assignment
of drug exposure—this factor is not a confounder.
Ideally, we would be able to fully assess the history

of GI irritation and group patients into strata of similar
baseline risk of GI hemorrhage. Comparing users of

Confounding

Measured confounders Unmeasured confounders* 

Design Analysis 
Unmeasured but 
measurable in a 
validation study 

Unmeasurable

Restriction

Matching 

Standardization

Stratification 

Multivariate 
regression  

Two-stage sampling 

External 
adjustment 

Crossover
designs 

Active
comparison
group 
(restriction)

Instrumental 
variables 

Sensitivity
analysis

* These strategies generally also adjust for measured confounders but come with additional assumptions or restrictions to 

generalizability 

Adapted from Schneeweiss S: Confounding. In: Hartzema A, Chan A, Porta M, Tilson H: Pharmacoepidemiology, 4th edition in press.

Design Analysis 

Figure 1. Strategies to control for unmeasured confounders in pharmacoepidemiology
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selective COX-2 inhibitors with users of non-selective
NSAIDs within these strata would then find, similar to
the findings of randomized trials, a reduced risk of GI
hemorrhage in users of selectiveCOX-2 inhibitors.14,20

However, often physicians consider subtle risk factors
for GI hemorrhage that are not recorded and are,
therefore, unmeasured confounders (CU in Figure 2b)
when they prescribe selectiveCOX-2 inhibitors. This is
less likely to happen in studies with primary data
collection than in studies using medical records or
claims data, in which the choice of covariates is
limited by the data source. Most non-experimental
studies using claims data with limited patient informa-
tion to compare selective with non-selective NSAIDs
will not be able to fully measure and adjust such
confounders and will therefore be unable to show a
gastroprotective effect of COX-2 inhibitors due to
residual confounding.

Array approach

The confounded relative risk (RR), which we call
apparent RR (ARR), can be expressed as the ‘true’ or
fully adjusted RR times Bias (ARR¼RR�BiasM),
which is an expression of the imbalance of a binary
confounding factor among exposed (PC1) and unex-
posed (PC0, using the notation in Table 2):21

ARR ¼ RR� PC1ðRRCD � 1Þ þ 1

PC0ðRRCD � 1Þ þ 1
ð1aÞ

Similar to this multiplicative model of confounding,
an additive model for risk differences (RD) can be
derived: 11

ARD ¼ RDþ ðPC1 � PC0ÞRDCD ð1bÞ

In basic sensitivity analyses on residual confound-
ing, we try to understand how the strength of an
unmeasured confounder and imbalance among drug
exposure categories affects the observed or apparent
RR. By solving Equation (1a) for RR

RR ¼ ARR

PC1ðRRCD�1Þþ1

PC0ðRRCD�1Þþ1

h i ð2Þ

and plugging in a range of values for PC1, PC0, and
RRCD for a given ARR, one can calculate the ‘true’
or more fully adjusted value of RR under these cir-
cumstances. The difference between ARR and RR
is the absolute bias on the relative risk scale, while
bias is also expressed as the ratio of ARR/RR7 or
the proportion of bias of the true RR: percent
bias¼ [(ARR�RR)/(RR� 1)]� 100. 22 In case of
an ARR of 2.0 and a true RR of 1.5, the percent of
the effect negated by bias would be 100% accord-
ingly. The advantage of this metric is that it recog-
nizes that the null value of a relative risk measure
is 1.0. Percent bias was also proposed as
[(ARR�RR)/RR]� 100 which can be rewritten as
[(ARR/RR)� 1]� 100. In case of an ARR of 2.0
and a true RR of 1.5, the percent bias would then
be 33% because the metric is assuming 0 as the
null value and not 1. Neither way of quantifying
the amount of confounding in a single number has
any clear advantage and inevitably information is
lost when two numbers are combined into one.
Most basic sensitivity analyses consider only the
value of the point estimate and not the precision of
its estimation. More complex sensitivity analyses
based on re-sampling can quantify random error.23

(a) Measured confounding 

C M

Exposure Disease outcome

(b) Measured and unmeasured confounding 

C U

C M

Exposure Disease outcome 

RRED

OREC RRCD

RRED

ORECM RRCMD

ORCUCM

RRCUDORECU

Figure 2. A graphical concept of measured and unmeasured
confounding.

Table 2. Notation

RR ‘True’ or fully adjusted exposure relative risk
ARR Apparent exposure relative risk
RRCD Association between confounder and disease outcome
PC Prevalence of confounder
PC1 Prevalence of confounder in the exposed
PC0 Prevalence of confounder in the unexposed
PE Prevalence of drug exposure
OREC Association between drug use category and confounder
RD ‘True’ or fully adjusted exposure risk difference
ARD Apparent exposure risk difference
CM Measured confounder
CU Unmeasured confounder
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Following our example of COX-2 inhibitor use and
the risk of GI hemorrhage, wewish to examine the role
of residual confounding in a hypothetical observational
study that found a relative risk of ARR¼ 1.5. The
prevalence of a history of GI bleeding or peptic ulcer
disease in the control group of users of non-selective
NSAIDs is PC0¼ 0.1. These two factors will not be
altered in the following sensitivity analysis. In
Figure 3, two factors were varied: the strength of the
confounder-disease association (1.0 to 5.5) and the
prevalence of the confounder in the coxib group (0.0 to
0.5). With an increasing imbalance of the confounder,
that is, patients receiving coxibs were more likely to
have a history of GI problems, the ‘true’ or fully
adjusted RR moves closer to the results observed in
randomized clinical trials of about 0.7. The back wall
of Figure 3 represents the situation when RRCD¼ 1,
which means that the potential confounder is assumed
to not be associated with the outcome. This scenario
would result in unbiased estimates, as would that of

perfectly balanced distributions of the confounder
among drug groups, that is, PC0¼PC1¼ 0.1. This is an
example of fairly strong confounding, as can be
expected when one studies anticipated drug effects
that is known to prescribers.
In realistic settings, ARR is already adjusted for a set

of measured covariates and the interest is in assessing
the residual confounding by additional covariates not
measured in the main study (Figure 2b). To the extent
that measured (and adjusted) confounders are corre-
lated with unmeasured characteristics, residual con-
founding caused by the unmeasured factors will be
reduced or partially adjusted. People who take vitamin
supplements are also more likely to have a healthy
lifestyle with more physical activity and careful
selection of nutrients. While it is easy to measure
intake of vitamins, the construct of health-seeking
lifestyle is much harder to quantify. Most techniques
for basic sensitivity analysis assume that measured
and unmeasured covariates are independent given

1.0
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5.0
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50.0

01.0

51.0

02.0

52.0

03.0

53.0

04.0

54.0

05.0

0.0
0.2

0.4
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

RR (fully 
adjusted)

RRCD

PC1

ARR = 1.5
PC0 = 0.10

Unbiased result if PC0 = PC1

* The curved surface represents the “true” or fully adjusted RR assuming an apparent relative 

risk of ARR=1.5 and a prevalence of an unmeasured confounder of PC0 = 0.1 in the unexposed 

group. The prevalence of the unmeasured confounder in the exposed group (PC1) is varied 

between 0.0 to 0.5 on the x-axis. The strength of the confounder-disease association (RRCD) is 

varied between 1.0 and 5.5 on the z-axis. With an increasing imbalance of the confounder (on 

the x-axis) the difference between the “true” or fully adjusted RR and the apparent RR 

increases. The back wall represents the scenario of RRCD = 1, i.e. the potential confounder is 

assumed to be not associated with the outcome resulting in no bias. The vertical line represents 

perfect balance of the potential confounder among drug exposure groups, i.e. PC0 = PC1 = 0.1, 

which results in an unbiased ARR. 

Figure 3. Sensitivity analysis of residual confounding: array approach
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exposure (ORCUCM¼ 1 in Figure 2b)24 and may,
therefore, overestimate the amount of residual con-
founding in practical settings. The Appendix gives an

additional example on the association between TNFa-
blocking agents and the risk of lymphaticmalignancies.

Rule-out approach

The array approach is helpful for exploring the effect
of residual confounding over a wide range of para-
meter constellations. However, researchers may want
to tailor a sensitivity analysis to their specific study
findings and assess the extent of confounding neces-
sary to fully explain the observed findings, that is,
the observed point estimate would move to the null
(ARR¼ 1). The hope is that a number of unmeasured
possible confounders can then be ruled out because
they cannot possibly be strong enough confounders
to explain the observed association. This approach
was also called target-adjustment sensitivity analy-
sis.25

To answer this question, we wanted to find all
combinations of OREC and RRCD (the left and right
sides of the confounding triangle in Figure 2a)
necessary to move the observed point estimate of RR
to 1. More formally, we wanted to plot the relationship
between OREC and RRCD for a given ARR, RRCD, PC,
and PE.
Assuming a two-by-two table of a dichotomous

exposure and a dichotomous confounder, the associa-
tion between the confounder and exposure can then be
measured by the confounder-exposure odds ratio or
OREC, which is a function of the prevalence of the
confounder among exposed (PC1) and the marginal
probabilities of exposure PE and confounder PC:

OREC ¼ PC1½1� PC � PE þ PC1�
½PC � PC1�½PE � PC1� ð3Þ

Assuming no underlying true exposure-disease asso-
ciation or RRED¼ 1, Walker26 showed that the appar-
ent relative risk (ARR) is a function of PC1, the
marginal probabilities PE and PC , and the confoun-
der-disease association RRCD:

ARR ¼ PC1½RRCD � 1� þ PE

½PC � PC1�½RRCD � 1� � PE þ 1

1� PE

PE

ð4Þ

If the primary interest is to explore the relationship
between OREC and RRCD for a given ARR, RRCD,
PC, and PE, we need to solve Equation (4) for PC1:

and substitute the derived term for PC1 in Equa-
tion (3).
An example is provided by Psaty et al.10 The authors

found an increased risk (ARR¼ 1.57) of acute
myocardial infarction (MI) in hypertensive patients
whowere using calcium channel blockers as compared
with those using beta-blockers.27 Their findings were
criticized for being caused by residual confounding by
unmeasured factors channeling the prescribing of
calcium channel blockers to patients at higher risk of
MI.28 His group produced a graph (reproduced in
Figure 4a) that demonstrated that very strong risk
factors of cardiovascular events must be unmeasured
and uncontrolled to explain the observed association.
In Figure 4a, all parameter combinations of OREC and
RRCD above and to the right of the curve representing
the ARR¼ 1.57 line would move the point estimate of
the association to 1. It becomes clear that strong risk
factors that are fairly imbalanced among exposure
groups must be unmeasured and uncontrolled. Psaty
et al. noted that most known, strong, independent risk
factors of MI, including diabetes, coronary heart
disease (CHD), or smoking, were already adjusted
and that any unmeasured confounder of the required
strength would also have to be independent of the
adjusted confounders, that is, correlated confounders
such as partial occlusions of coronary arteries are to
some extent adjusted by factors like preexisting CHD.
They repeated their sensitivity analysis for the value of
the observed lower 95% confidence limit (ARR¼ 1.3)
to determine the constellations in which the 95%
confidence interval would cross the null. For this
sensitivity analysis the prevalence of the unmeasured
confounder was fixed at PC¼ 0.2. Figure 4b shows the
same sensitivity analysis but now allows PC to vary
from 0.1 to 0.5. This type of sensitivity analysis is
insightful but under-utilized, although it is easy to
perform using an Excel spread sheet.
Despite the conclusion of Psaty et al. that

there is substantial evidence of a relation between
dehydropyridine calcium channel blocker use and the
risk of acute MI, randomized trials have now shown
that there is no increased risk of acute MI.29,30 This
example is a reminder that sensitivity analyses are
based on assumptions—implicit or explicit. An

PC1 ¼ PE � P2
E � ðPEPCRRCDARRÞ þ ðPEPCARRÞ þ ðP2

EARRÞ � ðPEARRÞ
ðPEARRÞ � ðPERRCDARRÞ � RRCD þ 1þ ðPERRCDÞ � PE

ð5Þ
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(a) PE is constant at 0.01 and PC is constant at 0.2:* 
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6.00

8.00

10.00

0 2 4 6 8 10

RRCD

O
R

C
E

ARR=1.57

ARR=1.3

* Each line splits the area into two: the upper right area represents all parameter combinations 

of OREC and RRCD that would create confounding by an unmeasured factor strong enough to 

move the point estimate of the apparent RR (ARR = 1.57) to the null (ARR=1) or even lower, i.e. 

make the association go away. Conversely, the area to the lower left represents all parameter 

combinations that would not be able to move the ARR to the null. This example by Psaty et al.10

assumed a prevalence of the confounder (PC) of 0.2 and a prevalence of the exposure (PE) of 

0.01.

(b) PE is constant at 0.01 but PC can vary from 0.1 to 0.5** 
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RRCD
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ARR = 1.57
PE = 0.01

** In addition to Figure 4a, PC is now varied between 0.1 and 0.5. The corresponding curve of 

Figure 4a fixed at PC=0.2 is highlighted. 

Curve of PC = 0.2 
as in Figure 3a 

Figure 4. Sensitivity analysis of residual confounding: Rule-out approach
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implicit assumption in Psaty’s casewas that it would be
very unlikely to miss such a strong single confounder.
It is conceivable that several weaker confounders
may have acted together and explained the apparent
RR. Alternatively, other biases may have led to an
increased ARR in this case-control study.31

Limitations of these methods are that they are
constrained to one binary confounder, which is
sufficient for illustrative purposes but may be not
helpful if several confounders are unmeasured and the
joint effect of such confounders is unknown, and that
these methods, unlike external adjustment, do not
provide an assessment of the magnitude of the existing
residual confounding in a specific study, or the choice
of reference group.

External adjustment: algebraic solution
for single binary confounders

If additional information is available, for example, a
detailed survey in a sample of the main database
study, such univariate sensitivity analyses can be
used to correct for confounders unmeasured in the
main study. 32 If internal validation studies are not
feasible or are too costly, external data sources can
be used under certain assumptions. For example,
the Medicare Current Beneficiary Survey (MCBS)
studies a representative sample of about 12,000
Medicare beneficiaries to measure a wide variety of
characteristics not captured in Medicare claims data,
such as limitations in activities of daily living,33 cog-
nitive impairment, and physical impairments.34

Since the study outcomes of many pharmacoepide-
miologic studies on the safety of drugs are rare mod-
erately sized validation studies can be used to
assess the imbalance of confounders among drug
exposure groups (OREC) but can rarely be used to
assess the confounder-outcome association (RRCuD).
Therefore, researchers extract the independent
effects of the individual confounders on the study
outcome from the literature. Given estimates of
OREC and RRCuD for each of the unmeasured con-
founders, an assessment of confounding bias by
unmeasured factors and therefore adjustment for
these factors can be achieved.32 Thus the MCBS
can be used for external adjustment of unmeasured
confounders in a variety of drug studies using
Medicare claims data.35,36

An example using medicare claims data
and MCBS survey information

To illustrate how to correct effect estimates for
unmeasured confounding using external information,

we used the association between selective COX-2
inhibitor use and the incidence of MI.32 Several epide-
miologic studies using health care utilization data-
bases reported such an association. In this example,
external adjustment was applied to a recent study
of Medicare beneficiaries who had complete drug
coverage through a pharmacy assistance program that
fully covered all selective COX-2 inhibitors and non-
selective NSAIDs.37 In this main study, a number of
potential confounders were adjusted using multivari-
ate analyses (CMeasured in Figure 2b).
We used the MCBS to estimate the associations

between predefined drug exposure categories and
selected confounders not measured in Medicare data
(CUnmeasured in Figure 2b) and estimates of the
confounder-disease associations abstracted from
the medical literature. The MCBS is a representative
sample of current Medicare beneficiaries living in the
community or in institutions.34 Data are obtained from
face-to-face interviews by trained interviewers in the
beneficiaries’ homes or facilities. In these surveys, the
response rate is generally high (between 85%and 95%)
and data are very complete.38,39 Specifically, five
patient characteristics not measured in Medicare
utilization data that might act as confounders
were identified as: body-mass index (BMI), over-the-
counter aspirin use, current smoking status, economic
status, and educational attainment.
The prevalence of exposure, PE, the prevalence of

potential confounders,PC, and the association between
exposure and confounder, OREC, were estimated from
the MCBS study population. Logistic regression was
used to calculate the corresponding age-sex-adjusted
OREC, which was used for all subsequent analyses. For
initial bias estimates, we assumed the null hypothesis
of no association between selective COX-2 inhibitor
exposure and the incidence of MI (RR¼ 1). Bias
estimates were later applied to the effect estimates
observed in the main study that may be different from
1. Estimates of the confounder-disease associations
that are unmeasured in the main study, RRCuD, were
derived from the literature. Literature estimates were
derived from large cohort studies or randomized trials
after an intensive literature search and expert consulta-
tions. If several valid literature estimates were
identified, the most extreme (farthest away from
the null) was chosen for the base-case analysis, which
would lead to more extreme estimates of bias.
Alternatively, averaged RRCuD values could be
used.
If the primary interest is to estimate ARR as a

function of OREC, RRCD, and the marginal probabil-
ities PE and PC , we need to solve Equation (3) for PC1:
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P2
C1ðOREC � 1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

a

þ PC1½�PCOREC � PEOREC þ PE þ PC � 1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

þ PCORECPE|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
c

¼ 0

ð6Þ
and PC1 can be found as the solution of a quadratic
equation of the form

PC1 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
ð7Þ

which will then be substituted for PC1 in Equa-
tion (4).

The joint distribution of unmeasured confounders
can rarely be assessed with this approach because
stable literature estimates are usually not available for
several confounder combinations. A practical solution
is to sum bias estimates of all confounders weighted by
the prevalence of each confounder in the validation
sample. Table 3 shows the calculation of such bias
estimates. More details on how values for this table
were derived are provided in an earlier publication.32A
maximum range of bias by summing all negative biases
to yield a realistic lower-bound estimate and all
positive confounders to yield a realistic upper-bound
estimate. It is theoretically possible that the effects of
individual biases are multiplicative. In such less likely
scenarios the additive bounds described here would be
falsely narrow.

This external adjustment depends on the correct
specification of RRCD from outside sources. Since the
literature estimate of RRCDmay not be generalizable to
a specific study setting, graphic exploration of the
sensitivity of the external adjustment procedure to
reasonable changes in RRCD is recommended
(Figure 5).
Based on this sensitivity analysis suggesting mini-

mal confounding by five unmeasured risk factors for
MI we felt more comfortable to publish results from
our database main study describing an association
between rofecoxib and an increased risk of MI.37 A
year later a large randomized controlled trial of
rofecoxib confirmed the elevated risk in a healthier
and younger population.40

The additional estimation error of OREC from the
validation study can be incorporated in the overall error
term. If RR¼ARR�BiasM and Var(ARR) is the

Table 3. COX2 external adjustment: quantitative assessment of confounding bias in relative risk estimates of the association
between the selective COX-2 inhibitor rofecoxib and myocardial infarction compared with naproxen

Potential confounder Data source:
RRCD

literature PC MCBS
OREC*
MCBS RR assumed PE MCBS ARR{

Percent
bias

z

Obesity (BMI �30 kg/m2 versus <30 kg/m2) 1.7 0.20 1.00 1.00 0.51 1.000 0.01
Aspirin use (use versus non-use) 0.7 0.10 1.60 1.00 0.51 0.987 �1.28
Smoking (current versus former/never) 3.1 0.07 0.95 1.00 0.51 0.994 �0.61
Educational Attainment
(�high school versus >high school)

2.1 0.70 0.64 1.00 0.51 0.944 �5.61

Income status (�$20,000 versus >$20,000) 2.1 0.51 0.63 1.00 0.51 0.922 �7.78
Net confounding

Sum of all negative biases: �15.3
Weighted average: �5.10
Sum of all positive biases: 0.01

*Age- and sex-adjusted.
{Apparent relative risk between exposure (COX-2 use) andMI outcome if the potential confounder was not controlled, under the assumption
that the fully adjusted relative risk RR equals 1.0.
z
Bias¼ [(ARR�RR)/RR]� 100.
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Figure 5. Sensitivity of bias estimates as a function of
misspecification of the confounder-disease association (RRCD)
from the literature
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variance estimate from the main study and Var(BiasM)
is the variance from the validation substudy, then

VarðRRÞ ¼ VarðARR� BiasMÞ ¼ ARR2

�VarðBiasMÞþBias2M�VarðARRÞ ð8Þ

This easy-to-use approach to assessing the direction
and magnitude of unmeasured confounding makes
several simplifying assumptions that limits its use.
Most importantly, confounder and outcome can only
be coded as dichotomous variables, which may over-
simplify the relation between some confounders and
outcomes. Another important limitation is that this
approach cannot consider the joint distribution of
unmeasured confounders. Instead, bias estimates are
summed over all confounders, weighted by the
prevalence of each confounder as a pragmatic
approximation of the net bias. Alternatively, the range
between the most extreme bias combinations, assum-
ing additive or multiplicative biases, could be con-
sidered, providing a most conservative and least
informative interpretation of the data. Also, this
approach still makes the simplifying assumption that
the unmeasured confounders are independent of
the measured confounders conditional on exposure
status.24 An association between measured and
unmeasured confounders can lead to an overestimation
of the magnitude of bias.
Of course the validity of external adjustment also

depends on the accuracy of the confounder assessment
in the validation substudy and may be limited by the

number of important confounders assessed in such
studies.
Despite this list of limitations, this approach is

valuable for describing or ruling out meaningful
confounding that can be assessed in validation
substudies but not in claims data main studies.

External adjustment: multiple confounders
of various distributions

External adjustment methods were recently extended
to a multivariate adjustment for unmeasured confoun-
ders that uses a new technique of propensity score
calibration (PSC), which can be applied when external
information is available that does not contain outcome
information.41 In a validation study for each subject,
the full database record is available along with
detailed survey information. The goal is to compute
within the validation population an error-prone expo-
sure propensity score using only database informa-
tion, as well as an improved exposure propensity
score that also includes survey information for each
subject (Table 4). The error component in the database
propensity score in the validation study is then quan-
tified and can be used to correct the propensity score
in the database main study, using established regres-
sion calibration techniques.42 PSC implicitly takes
into account the joint effect of unmeasured confoun-
ders that are measured only in the validation study, as
well as the relation between measured and unmea-
sured confounders (ORCUCM in Figure 2b). PSC can,

Table 4. Illustration of the data structure used for the PSC approach

Data items

Main study Validation study

Error prone measurement ‘Gold standard’ measurement

Medicare Claims Data

MCBS survey

MCBS claims MCBS claims plus survey

Drug exposure X
z

X X
Demographics X X X
Diagnoses X X X
Procedures X X X
Visits X X X
Smoking X
Aspirin X
Body-mass index X
Functional status X
Cognitive status X
Education X

The shaded headings represent the notation used in themeasurement-error literature,while the other headings represent data fromour example
using Medicare data and the MCBS survey.
z
Pharmacy dispensing information linked from pharmacy assistance programs.
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therefore, elegantly overcome major limitations of the
algebraic approach to external adjustment described
above, although it may not perform well in situations
were the surrogacy assumption of regression calibra-
tion is violated.42,43

In contrast to two-stage sampling designs44–46 or
multiple imputation,47 PSC does not require that
outcome information in the validation study performs
well, which is an important advantage in drug safety
studies of rare adverse effects.48

Simulation-based sensitivity analyses

For completeness, simulation-based sensitivity analyses
should be mentioned, although they require more tech-
nical understanding and programming skills than the
above approaches. Such analyses, also called Monte
Carlo sensitivity analysis (MCSA), sample bias para-
meters and then invert the bias model to provide a dis-
tribution of bias-corrected estimates. Although MCSA
still relies on additional empirical information or struc-
tural assumptions, these techniques can provide mea-
sures of variation in addition to bias-corrected point
estimates. Applications can be found in a number of
publications. 23,49–51 Greenland provides a comprehen-
sive overview of such techniques52 and discusses how
they can be expanded beyond confounding bias to
sequentially assess the impact of a cascade of systema-
tic errors possible in epidemiology1 including misclas-
sification and sampling bias.

CONCLUSION

The absence of information on potential confounders
is a common criticism of non-experimental studies
based on health care utilization data. Easy-to-apply
sensitivity analyses and external adjustments using
validation study data should be applied more fre-
quently to quantitatively assess confounding bias in
pharmacoepidemiologic studies that use claims data.
Despite such quantitative approaches to residual
confounding the interpretation of what constitutes an
analysis that is insensitive to unmeasured confounders
remains a matter of judgment and any external adjust-
ment relies on the quality of validation data.
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APPENDIX 1

Alternative example of the array approach: an
association between biologic anti-TNFa therapy and
the risk of lymphatic malignancies (LM)

1. ARR: Several recent cohort studies showed an
increased risk of LM in patients with rheumatoid

Figure A1

KEY POINTS

(1) Pharmacoepidemiologic studies using admin-
istrative data are often criticized for their lim-
ited ability to measure clinically important
confounders.

(2) Quantitative sensitivity analyses are easy to
perform using spreadsheets (www.drugepi.org)
and can much improve our understanding of
residual confounding.

(3) If validation study data are available for a sub-
set then external adjustment is possible using
simple algebraic formulas.

(4) Propensity Score Calibration is a very promis-
ing tool for external adjustment of multiple
confounders simultaneously.

(5) Sensitivity analyses should be done more fre-
quently although their results must be inter-
preted cautiously.
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arthritis (RA) who used biologics, often in combina-
tion with methotrexate (MTX). Wolfe found a
threefold increased risk for lymphoma among
patients in an RA registry treated with anti-TNFa as
compared with SEER cancer registry data from the
general public.53 A Swedish registry study found an
11-fold increased risk for lymphoma in anti-TNFa
users as compared with the general public.54

2. RRCD: There is some evidence from observational
studies that patients with more severe RA are more
likely to develop LM. 55

3. OREC: It was suspected that patients with more
severe RA were more likely to receive biologic
anti-TNFa therapy.

In this simplified scenario, we have now established
that RA severity may act as a confounder of the
biologics—LM association. However, it is not clear
which exact components of severity of RA, including
acute inflammation, pain, functional impairment,
long-term disability, are associated with the decision
to prescribe biologics.
Since current evidence on RRED and OREC is

insufficient, calculating the sensitivity of ARR as a
function of RRCD, PC0, and PC1 may provide a better
understanding of the uncertainties involved in making
claims about the safety of biologics in RA patients.
Figure A1 demonstrates such a sensitivity analysis,
analogous to Figure 3 in the text.
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